报告人

曾祥勇

举办单位

科技处、学科办、数统学院

报告题目

On the differential spectrum and the APcN property of a class of power functions over finite fields

报告时间

2021123 14:30-16:00

报告地点

数统楼312

报告人所属单位

湖北大学

报告人职称/职务

二级教授,博士生导生,数学与统计学学院、网络空间安全学院院长

报告内容简介

In this talk, a class of power functions F(x)=x^d over the finite field F_{q^4} is investigated, where n is a positive integer, q=2^n and d=q^3+q^2+q-1. The differential spectrum of this function is completely determined which gives an affirmative answer to a recent conjecture proposed by Budaghyan, Calderini, Carlet, Davidova and Kaleyski. Further, it is proved that this power function is APcN with respect to all cF_{q^4}\{1} satisfying c^{q^2+1}=1, and the c-differential spectrum is determined. This is the second class of APcN power functions over finite fields of even characteristic.


上一篇:下一篇:

作者:数学与统计学院发布时间:2021-11-29

返回原图
/

?

XML 地图 | Sitemap 地图